Recursive Inversion Models for Permutations
نویسندگان
چکیده
We develop a new exponential family probabilistic model for permutations that can capture hierarchical structure and that has the Mallows and generalized Mallows models as subclasses. We describe how to do parameter estimation and propose an approach to structure search for this class of models. We provide experimental evidence that this added flexibility both improves predictive performance and enables a deeper understanding of collections of permutations.
منابع مشابه
A class of Recursive Permutations which is Primitive Recursive complete
We focus on total functions in the theory of reversible computational models. We define a class of recursive permutations, dubbed Reversible Primitive Permutations (RPP) which are computable invertible total endo-functions on integers, so a subset of total reversible computations. RPP is generated from five basic functions (identity, negation, successor, predecessor, swap), two notions of compo...
متن کاملOn edge-weighted recursive trees and inversions in random permutations
We introduce random recursive trees, where deterministically weights are attached to the edges according to the labeling of the trees. We will give a bijection between recursive trees and permutations, which relates the arising edge-weights in recursive trees with inversions of the corresponding permutations. Using this bijection we obtain exact and limiting distribution results for the number ...
متن کاملInversion polynomials for 321-avoiding permutations
We prove a generalization of a conjecture of Dokos, Dwyer, Johnson, Sagan, and Selsor giving a recursion for the inversion polynomial of 321-avoiding permutations. We also answer a question they posed about finding a recursive formulas for the major index polynomial of 321-avoiding permutations. Other properties of these polynomials are investigated as well. Our tools include Dyck and 2-Motzkin...
متن کاملApplication of Recursive Least Squares to Efficient Blunder Detection in Linear Models
In many geodetic applications a large number of observations are being measured to estimate the unknown parameters. The unbiasedness property of the estimated parameters is only ensured if there is no bias (e.g. systematic effect) or falsifying observations, which are also known as outliers. One of the most important steps towards obtaining a coherent analysis for the parameter estimation is th...
متن کاملGeneralized Stirling permutations, families of increasing trees and urn models
Bona [6] studied the distribution of ascents, plateaux and descents in the class of Stirling permutations, introduced by Gessel and Stanley [14]. Recently, Janson [18] showed the connection between Stirling permutations and plane recursive trees and proved a joint normal law for the parameters considered by Bona. Here we will consider generalized Stirling permutations extending the earlier resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014